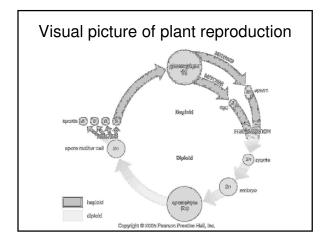
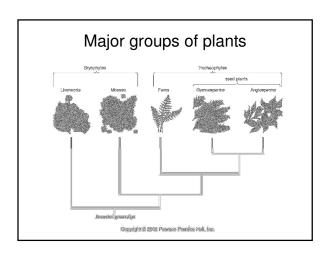

The Diversity of Plants

Chapter 21

Plants are in Domain Eukarya

- Immediate ancestors are green algae, a type of Protista, that lived in fresh water. They share:
 - Similar DNA
 - Same photosynthetic pigments (most plants are primary producers)
 - Store food as starch
 - ❖ Cell walls made of cellulose


Kingdom Plantae

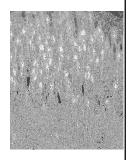

- · All are eukaryotes
- · Cell walls made of cellulose
- Most are primary producers
 - Carry out photosynthesis!
 - Chloroplasts are sites of photosynthesis
- · Some are parasites
 - ❖Example: mistletoe!

Key feature: Alternation of generations

- A diploid sporophyte produces haploid spores.
 The sporophyte is usually the common form of the plant.
- Haploid spores divide to become haploid gametophytes.
- Haploid gametophytes produce haploid gametes (eggs and sperm)
- Egg and sperm unite to form the diploid zygote.
- Zygote developes into the embryo.
 Embryo relies on nutrients from parent
- Embryo develops into the sporophyte

Bryophytes

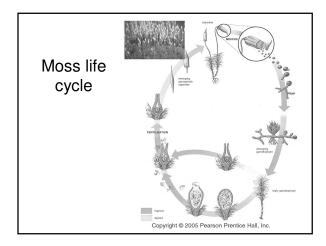
- · Examples: liverworts and mosses
- Most similar to ancestral green algae
- · Non-vascular: lack special conducting vessels for movement of water and materials
 - ❖No true roots, leaves or stems
 - ❖Body size limited

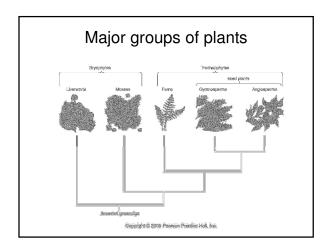


Bryophyte reproduction

- Haploid gametophyte is dominant (green in photo)
 - Produces gametes in specialized structures (keep gametes moist!)
- Requires water for sperm to swim
 - Egg chemically attracts the sperm
 Egg stays in its "archegonium"
 attached to the gametophyte
 Fertilization within archegonium

 - ❖ Zygote → Embryo → sporophyte
- Sporophyte remains attached to gametophyte (brown stalks)


 Develops and produces spores
- Spores disperse; develop into gametophytes

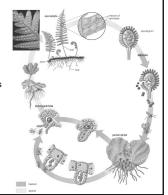


Mosses live in wetlands

· Especially bogs

Tracheophytes: vascular plants 1: Seedless vascular plants

- All vascular plants have vessels reinforced with <u>lignin</u>
 - ❖Movement of materials
 - ❖Support
- All vascular plants have dominant sporophytes
- Examples of <u>seedless</u> vascular plants
 - club mosses ("ground pines")
 - ❖ Horsetails
 - ❖ferns
 - All are found in moist woodland habitats


Fern life cycle

- Sporophyte dominant
 Diploid sporangia on leaf
 underside produce haploid spores.
- Gametophyte tiny
 Has specialized, egg and sperm producing structures (just like bryophytes (i.e. mosses!)

 - * Eggs retained in archegonium

 Sperm swims to egg; fertilization within archegonium

 Zygote → Embryo → sporophyte

Ferns: sporophyte & gametophyte

Gametophyte

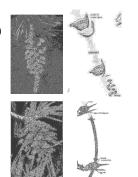
Major groups of plants Copyright © 2005 Pearson Preniice Hall, fre.

Tracheophytes: vascular plants 2: Vascular plants with seeds

- Different from the seedless vascular plants
 - ❖ Produce seeds!
 - ➤ Contain developing embryos
 - ➤ Contain stored food
 - ➤ Protected by seed coat
 - ❖ Produce pollen
 - ➤ Pollen grains are the sperm-producing (male) gametophytes
 - ➤ Can disperse by wind or pollinators
 - Fertilization no longer tied to water!

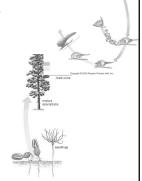
Gymnosperms: non-flowering seed plants

- Examples
 - ❖ Ginkgos
 - Probably the first "modern-day" seed plants
 - > Maintained by cultivation in Asia
 - > Pollution resistant
 - ➤ Does *Ginkgo biloba* improve memory?
 - Cycads
 - > Resemble large ferns
 - $\succ \mathsf{Slow}\text{-}\mathsf{growing}$
 - > Long-lived
 - One Australia cycad is ~5000 years old!
 - ❖Conifers (next page)


Gymnosperms: non-flowering seed plants

- Conifers
 - Pines, firs, spruces, hemlocks, cypresses
 - Many are well-adapted to cold, dry conditions
 - ➤ Retain green leaves year round; can photosynthesize and grow all year
 - ➤ Waterproof coating of needles (leaves) prevents water loss
 - ➤ Contain an "antifreeze" in their sap that allows for nutrient transport in sub-zero temperatures

Conifer life cycle

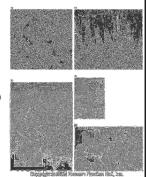

- Sporophyte has male and female cones
 - Male gametophytes (pollen) produced in male cones
 - ➤ Pollen grains have "wings" and disperse on the wind
 - ❖ Female gametophyte is within scale of female cone
 - ➤ The "ovule" contains spores that divide (meiosis) to become the gametophyte
 - ➤ Gametophyte produces the

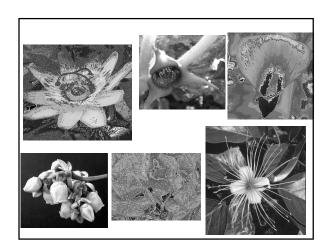
Conifer (gymnosperm) life cycle

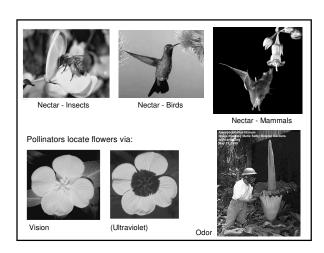
- · Fertilization within female cone
 - Pollen lands on cone; pollen tube extends slowly to ovule
 - > Tube takes 14 months to grow, deposit sperm
- After fertilization, the ovule develops into the seed with

 - EmbryoNutrients
 - ❖ Seed coat
- Seed germinates→
- Seedling → mature sporophyte

Pinyon nuts

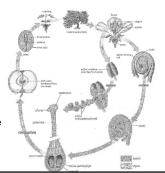

- Pinyon nuts (pine nuts) are the seeds of pine trees.
 - ❖Found only in female cones.
 - ❖Edible, but you have to beat the squirrels to them.



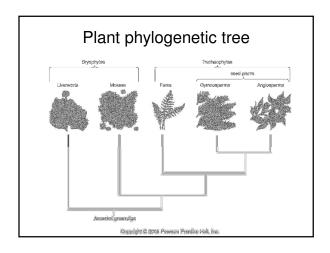

Angiosperms: flowering plants

- Flowers attract pollinators (mutualistic)

 - Pollinators move pollen (and thus sperm!) from flower to flower
 Pollinators gain food
 Flower features evolved to be attractive to the pollinators
- Fruits (containing seeds) promote seed dispersal (How?)
- Broad leaves capture sunlight effectively
 - Some flowering plants don't have broad leaves, though... (Why not?)
 May also have toxins to prevent being eaten


How do they attract pollinators?

- Food (nectar)
- Color
 - ❖Bees like yellow flowers
 - Hummingbirds like red flowers
- Odor
 - ❖Flies like smelly plants


Angiosperm life cycle (unique features): Compare to others...

- Pollen produced on anthers of flower
- Lands on stigma
 Via wind or pollinator
- Builds pollen tube to ovary that contains ovules
- Fertilization in ovule
- After fertilization
 - Ovule develops into the seed
 - Ovary develops into

Trends in plant evolution

- Increased prominence of sporophyte; reduction of gametophyte
- Development of lignin-supported vessels (support on land; larger sizes reached)
- Development of alternate (non-swimming) methods for sperm to reach egg.
- Development of seeds (embryo protection)
- Development of flowers/fruits: pollination and seed dispersal by animals

